An algorithm for nonparametric GARCH modelling

نویسندگان

  • Peter B uhlmann
  • Alexander J. McNeil
چکیده

A simple iterative algorithm for nonparametric 1rst-order GARCH modelling is proposed. This method o4ers an alternative to 1tting one of the many di4erent parametric GARCH speci1cations that have been proposed in the literature. A theoretical justi1cation for the algorithm is provided and examples of its application to simulated data from various stationary processes showing stochastic volatility, as well as empirical 1nancial return data, are given. The nonparametric procedure is found to often give better estimates of the unobserved latent volatility process than parametric modelling with the standard GARCH(1,1) model, particularly in the presence of asymmetry and other departures from the standard GARCH speci1cation. Extensions of the basic iterative idea to more complex time series models combining ARMA or GARCH features of possibly higher order are suggested. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysing Financial Data Using Polya Trees

We present a new approach to generalised autoregressive conditional het-eroscedasitic (GARCH) modelling for asset returns. Instead of attempting to choose a speciic distribution for the errors, as in the usual GARCH model formulation, we use a nonparametric distribution to estimate these errors. This takes into account the common problems encountered in nancial time series, for example, asymmet...

متن کامل

Analysing nancial data using Polya treesBy

We present a new approach to generalised autoregressive conditional heteroscedasitic (GARCH) modelling for asset returns. Instead of attempting to choose a speciic distribution for the errors, as in the usual GARCH model formulation, we use a nonparametric distribution to estimate these errors. This takes into account the common problems encountered in nan-cial time series, for example, asymmet...

متن کامل

Bayesian Non-Parametric Mixtures of GARCH(1,1) Models

Traditional GARCH models describe volatility levels that evolve smoothly over time, generated by a single GARCH regime. However, nonstationary time series data may exhibit abrupt changes in volatility, suggesting changes in the underlying GARCH regimes. Further, the number and times of regime changes are not always obvious. This article outlines a nonparametric mixture of GARCH models that is a...

متن کامل

Semi- and Nonparametric ARCH Processes

ARCH/GARCH modelling has been successfully applied in empirical finance for many years. This paper surveys the semiparametric and nonparametric methods in univariate andmultivariate ARCH/GARCHmodels. First, we introduce some specific semiparametric models and investigate the semiparametric and nonparametrics estimation techniques applied to: the error density, the functional form of the volatil...

متن کامل

Modelling financial time series with SEMIFAR-GARCH model

A class of semiparametric fractional autoregressive GARCH models (SEMIFARGARCH), which includes deterministic trends, difference stationarity and stationarity with shortand long-range dependence, and heteroskedastic model errors, is very powerful for modelling financial time series. This paper discusses the model fitting, including an efficient algorithm and parameter estimation of GARCH error ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001